【数検1級対策】これで十分。微分方程式の総まとめ

zuka

こんにちは。
zuka(@beginaid)です。

本記事では,数学検定1級で頻出の微分方程式についてまとめていきます。

初学者の分かりやすさを優先するため,多少正確でない表現が混在することがあります。もし致命的な間違いがあればご指摘いただけると助かります。

目次

変数分離形

\begin{align}
\frac{dy}{dx} &= \frac{y}{x(y+1)} \\[0.7em]
\frac{dy}{dx} &= (x + y)^2
\end{align}

同次形

\begin{align}
(7x + 4y)\frac{dy}{dx} &= -8x -5y
\end{align}

一階非同次線形

\begin{align}
(x^2 + a^2)y^{\prime} + xy &= 1
\end{align}

ベルヌーイの微分方程式

\begin{align}
x\frac{dy}{dx} + y &= y^2 \log x
\end{align}

完全微分方程式

\begin{align}
(3x^2 + \cos y) dx &= (2y - x\sin y) dy \\[0.7em]
(y + \log x)dx + x\log x dy &= 0
\end{align}

二階同次線形

\begin{align}
y^{\prime\prime} + 5y^{\prime} + 4y &= 0 \\[0.7em]
y^{\prime\prime} + 4y &= 0 \\[0.7em]
y^{\prime\prime} - 2y^{\prime} + 4y &= 0
\end{align}

二階非同次線形

\begin{align}
y^{\prime\prime} + 5y^{\prime} + 4y &= x^{2} \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= \sin x \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= e^{x} \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= e^{x} x^2 \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= e^{x} \sin x \\[0.7em]
y^{\prime\prime} + 5y^{\prime} &= x^2 \\[0.7em]
y^{\prime\prime} &= x^2 \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= e^{-x} \\[0.7em]
y^{\prime\prime} + 4y &= e^{-2x} \\[0.7em]
y^{\prime\prime} + 5y^{\prime} + 4y &= e^{-x} x^2 \\[0.7em]
y^{\prime\prime} + 4y &= e^{-2x} x^2 \\[0.7em]
y^{\prime\prime} + 4y &= \sin -2x \\[0.7em]
y^{\prime\prime} - 2y^{\prime} + 4y &= e^{-x} \sin \sqrt{3}x
\end{align}

オイラーの微分方程式

\begin{align}
x^2 \frac{d^2 y}{dx^2} - 3x\frac{dy}{dx}+ 4y &= x^2\log x
\end{align}

クレローの微分方程式

\begin{align}
y &= xy^{\prime} + \left( y^{\prime}\right)^2
\end{align}

ラグランジュの微分方程式

\begin{align}
y &= (y^{\prime}+1)x + \left( y^{\prime}\right)^2
\end{align}

リッカチの微分方程式

\begin{align}
y^{\prime}&=e^x-y+e^{-x}y^2
\end{align}

シェアはこちらからお願いします!
URLをコピーする
URLをコピーしました!

コメント

コメントする

※スパム対策のためコメントは日本語で入力してください。

目次
目次
閉じる