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Automatic music transcription (AMT)

Aim . Estimate music scores from audio signals

Value . Help music composition and arrangement

Automatic drum transcription (ADT)

Role . Rhythmic backbone of popular music
Inst . Multiple
Pitch : Different from instruments

Value : Hardtoadjust

Most works focus on onset times

which the main three parts are played at
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Conventional studies: Focusing only on acoustic features

Frame level Alignment Tatum level 'N

TN —
L L Quantize
Binarize : Threshold

BD SD HH ]

BD SD HH

[T

Onset probability

Spectroram Drum score

CNN : Local fratures

RNN : Temporal dependencies Quantize : Estimated beat times

Problem®: Often estimates musically-unnatural drum patterns
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ldea: Tatum-level language model-based ADT method

Tatum level
l Language model How unnatural
the drum score is

Encoder-decoder
> 2 s Evaluator of
musical naturalness

Drum score

1. CNN-based encoder 1. Repetition-aware bi-gram
2. GRU-based decoder 2. GRU-based language model
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Markov model(HMM-<n-gram) [Paulus+, 09]

Stati.stica.nl language model | Simple architecture and
considering temporal dependencies good performance

Deep language model (RNN) [Sigtia+, 15]

Evaluate musical naturalness . High expressive power and
What? : Point . :
with recurrent neural networks easy implementation

It’s hard to learn tatum-level musical structure

Problem®: due to the frame-level modeling
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Cold fusion [Sriram+, 18]

Logit output of a pretrained Easy imol - q
language model is used in the sy impiemen .a on an
fastness at run time

training phase

Bayesian inerence [Ueda, 19]

A VAE-based language model is
used as a prior of the NMF-based Flexible prior distribution

transcription model

Point: There are few studies to integrate a DNN-based language model
° into a DNN-based transcription model in ADT
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Point 1: Encoder-decoder model

Minimize Ground-truth
Encoder Decoder T— Loan \ I
(Frame-level) (Tatum-level)
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Spectrogram

Onset probabilities
(Frame-level)

Alignment (Tatum-level)

[ Max-pooling ]
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Point 2: Regularization in the training phase

15/23

Minimize

Ground-truth

) —

[ Gumbel-sigmoid

\ AU

Binarization

Onset probabilities
(Tatum-level)

BD SD HH

(L D Lo

A

[ Pretrained
language model

]

(

N
The musical

unnaturalnessis

evaluated in the

differentiable
manner

Drum score
(Tatum-level)

Background

Related works

Proposed method

Experiments



CHAPTER 3
Proposed method 16/23

Tatum times [ Transcription model ) Gumbel-sigmoid
r T I
T T
o |53 N:
S; ‘ . J \ Y J 8 o ¢ 8 .
pectrogram X | Encoder Decoder | Onset probabilities Estimated (?rum scoreY
r N e : 3
E Pretrained
m tran LIanguage modeIJ
Encoder-decoder \/
model 8! : r h
&< Regularization 1
. < l_ an
Point 2 \ \ o
Regularization in the T )
training phase {ﬁtotal = Lirant aﬁlang} - J ) 9 )
@)
Point 3 \l/ Q | | ﬁ
J
\Language model y Minimize Ground-truth Y

Background Related works Proposed method Experiments



CHAPTER 3
Proposed method

Point 3: Design of the language models
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Dataset RWC popular music database
(Transcription) (65 songs)
Input Spectrogram X )
I()E;ﬁseta e model) J(Efzpsgér?e:)tles ( Convolution 3x3x32 + BatchNorm )]
guag g ( Convolution 3><.3><32 + BatchNorm ]
Test / Validation lO;fold Cross valldatlon(fcest) ( Max-pooling 1x3x1 ) e
15% of training data (valid) (— Convolution 3x3x64 + BatchNorm ) ' Eioio)
Data augmentation | Spleeter ( Convolution 3x3x64 + BatchNorm )
) : - - ( Max-pooling 1x3x1 )
Architecture CRNN as in the right figure ( Max-pooling Frame — Tatum )]
Audio features Mel spectrogram (80bands) ( GRU 3x98 )]
y - " ( Drop-out p=0.3 ) | Taum-tevel
yperparameters ptuna ( = % — 3 )]
Measurement Precision / Recall / F-measure Output Onset probabilities ¢ )
Beat estimation Madmom (F = 96.4%)
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Language model | Perplexity
Bi-gram 1.51
GRU 1.44
Repetition-aware bi-gram GRU

L
I
(@)
(9]
(@)
2]

Skip type (16 tatum) transitions Transitions from the first tatum

GRU was better than bi-gram
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Weighting factor of the language ||110del x Mad,;mm R x Grour};;l-truth R
State-of-the-art> CRNN [7] | 774 65.9 776 66.1
Without regularization > CRNN 86.3 73.1 86.7 733
With regularization > + Bi-gram (a = 0.068) 84.7 79.1 83.7 788
With regularization—» + GRU (a = 0.055) 84.0 80.2 83.2 79.7

This experiment showed that...

1. The frame-to-tatum outperformed the SoTA method by 8 points

2. The language model-based regularization outperformed the non-
regularized method by 2 points

3. The GRU-based regularization had much improvement than the bi-gram-
based regularization

[7] Vogl, Richard, et al. "Drum Transcription via Joint Beat and Drum Modeling Using Convolutional Recurrent Neural Networks." ISMIR. 2017.
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RWC-MDB-P-2001 No.88(F = 58.3%— 79.9 % )
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Points
Viewpoint Frame-to-frame methods predict musically-unnatural drum patterns
Keypoint Tatum-level language model-based regularized training
Experiments
The frame-to-tatum architecture improved about 8 points
F-measure . The regularization improved about 2 points

GRU has much improvement than bi-gram
Future works
Work1 . Dealing with Fill-ins
Work2 . Learn other than three main parts such as symbals and toms
Work3 . Capturing global structure with self-attention mechanism



